Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.01.13.575537

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an immune-related disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 invades cells via the entry receptor angiotensin-converting enzyme 2 (ACE2). While several attachment factors and co-receptors for SARS-CoV-2 have been identified, the complete pathogenesis of the virus remains to be determined. Unraveling the molecular mechanisms governing SARS-CoV-2 interactions with host cells is crucial for the formulation of effective prophylactic measures and the advancement of COVID-19 therapeutics. Here, we identified butyrophilin subfamily 3 member A2 (BTN3A2) as a potent inhibitor of SARS-CoV-2 infection. The mRNA level of BTN3A2 was correlated with COVID-19 severity. Upon re-analysis of a human lung single-cell RNA sequencing dataset, BTN3A2 expression was predominantly identified in epithelial cells. Moreover, this expression was elevated in pathological epithelial cells from COVID-19 patients and co-occurred with ACE2 expression in the same cellular subtypes in the lung. Additionally, BTN3A2 primarily targeted the early stage of the viral life cycle by inhibiting SARS-CoV-2 attachment through direct interactions with the receptor-binding domain (RBD) of the Spike protein and ACE2. Furthermore, BTN3A2 inhibited ACE2-mediated SARS-CoV-2 infection by reducing ACE2 in vitro and in a BTN3A2 transgenic mouse model. These results reveal a key role of BTN3A2 in the fight against COVID-19 and broaden our understanding of the pathobiology of SARS-CoV-2 infection. Identifying potential monoclonal antibodies that target BTN3A2 may facilitate disruption of SARS-CoV-2 infection, providing a therapeutic avenue for COVID-19.


Subject(s)
Coronavirus Infections , Congenital, Hereditary, and Neonatal Diseases and Abnormalities , COVID-19
2.
Front Public Health ; 11: 1050759, 2023.
Article in English | MEDLINE | ID: covidwho-20245408

ABSTRACT

Objective: We aimed to investigate the influence of media on college students' mental health during the COVID-19 pandemic. Methods: After the COVID-19 outbreak, we used cross-sectional surveys through online questionnaires to investigate the mental health of college students in lockdown at home. We identified the influencing factors of PTSD symptoms using the Chi-Square test and ordinal logistic regression analysis. Results: In 10,989 valid questionnaires, 9,906 college students with no PTSD symptoms, 947 college students with subclinical PTSD symptoms (1-3 items), and 136 college students with four or more PTSD symptoms were screened out. The results showed that media content impacted the mental health of college students in lockdown at home. Positive media content was negatively correlated with PTSD symptoms among college students. PTSD symptoms were not associated with sources of information. Moreover, College students with PTSD symptoms would reduce their willingness to learn and could not complete online learning efficiently. Conclusion: PTSD symptoms are related to media exposure and excessive information involvement of COVID-19 in college students, which influences the willingness to attend online classes.


Subject(s)
COVID-19 , Pandemics , Humans , Cross-Sectional Studies , COVID-19/epidemiology , Communicable Disease Control , Disease Outbreaks , Students
3.
Adv Healthc Mater ; : e2300673, 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2320621

ABSTRACT

The viral spike (S) protein on the surface of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) receptors on the host cells, facilitating its entry and infection. Here, functionalized nanofibers targeting the S protein with peptide sequences of IRQFFKK, WVHFYHK and NSGGSVH, which are screened from a high-throughput one-bead one-compound screening strategy, are designed and prepared. The flexible nanofibers support multiple binding sites and efficiently entangle SARS-CoV-2, forming a nanofibrous network that blocks the interaction between the S protein of SARS-CoV-2 and the ACE2 on host cells, and efficiently reduce the invasiveness of SARS-CoV-2. In summary, nanofibers entangling represents a smart nanomedicine for the prevention of SARS-CoV-2.

4.
Signal Transduct Target Ther ; 8(1): 169, 2023 04 24.
Article in English | MEDLINE | ID: covidwho-2305969

ABSTRACT

Effective drugs with broad spectrum safety profile to all people are highly expected to combat COVID-19 caused by SARS-CoV-2. Here we report that nelfinavir, an FDA approved drug for the treatment of HIV infection, is effective against SARS-CoV-2 and COVID-19. Preincubation of nelfinavir could inhibit the activity of the main protease of the SARS-CoV-2 (IC50 = 8.26 µM), while its antiviral activity in Vero E6 cells against a clinical isolate of SARS-CoV-2 was determined to be 2.93 µM (EC50). In comparison with vehicle-treated animals, rhesus macaque prophylactically treated with nelfinavir had significantly lower temperature and significantly reduced virus loads in the nasal and anal swabs of the animals. At necropsy, nelfinavir-treated animals had a significant reduction of the viral replication in the lungs by nearly three orders of magnitude. A prospective clinic study with 37 enrolled treatment-naive patients at Shanghai Public Health Clinical Center, which were randomized (1:1) to nelfinavir and control groups, showed that the nelfinavir treatment could shorten the duration of viral shedding by 5.5 days (9.0 vs. 14.5 days, P = 0.055) and the duration of fever time by 3.8 days (2.8 vs. 6.6 days, P = 0.014) in mild/moderate COVID-19 patients. The antiviral efficiency and clinical benefits in rhesus macaque model and in COVID-19 patients, together with its well-established good safety profile in almost all ages and during pregnancy, indicated that nelfinavir is a highly promising medication with the potential of preventative effect for the treatment of COVID-19.


Subject(s)
COVID-19 , HIV Infections , Pregnancy , Animals , Female , Humans , SARS-CoV-2 , Nelfinavir/pharmacology , Macaca mulatta , Prospective Studies , China , Antiviral Agents/pharmacology
5.
Frontiers in microbiology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2280173

ABSTRACT

The real-time polymerase chain reaction (PCR), commonly known as quantitative PCR (qPCR), is increasingly common in environmental microbiology applications. During the COVID-19 pandemic, qPCR combined with reverse transcription (RT-qPCR) has been used to detect and quantify SARS-CoV-2 in clinical diagnoses and wastewater monitoring of local trends. Estimation of concentrations using qPCR often features a log-linear standard curve model calibrating quantification cycle (Cq) values obtained from underlying fluorescence measurements to standard concentrations. This process works well at high concentrations within a linear dynamic range but has diminishing reliability at low concentrations because it cannot explain "non-standard” data such as Cq values reflecting increasing variability at low concentrations or non-detects that do not yield Cq values at all. Here, fundamental probabilistic modeling concepts from classical quantitative microbiology were integrated into standard curve modeling approaches by reflecting well-understood mechanisms for random error in microbial data. This work showed that data diverging from the log-linear regression model at low concentrations as well as non-detects can be seamlessly integrated into enhanced standard curve analysis. The newly developed model provides improved representation of standard curve data at low concentrations while converging asymptotically upon conventional log-linear regression at high concentrations and adding no fitting parameters. Such modeling facilitates exploration of the effects of various random error mechanisms in experiments generating standard curve data, enables quantification of uncertainty in standard curve parameters, and is an important step toward quantifying uncertainty in qPCR-based concentration estimates. Improving understanding of the random error in qPCR data and standard curve modeling is especially important when low concentrations are of particular interest and inappropriate analysis can unduly affect interpretation, conclusions regarding lab performance, reported concentration estimates, and associated decision-making.

6.
Front Microbiol ; 14: 1048661, 2023.
Article in English | MEDLINE | ID: covidwho-2280174

ABSTRACT

The real-time polymerase chain reaction (PCR), commonly known as quantitative PCR (qPCR), is increasingly common in environmental microbiology applications. During the COVID-19 pandemic, qPCR combined with reverse transcription (RT-qPCR) has been used to detect and quantify SARS-CoV-2 in clinical diagnoses and wastewater monitoring of local trends. Estimation of concentrations using qPCR often features a log-linear standard curve model calibrating quantification cycle (Cq) values obtained from underlying fluorescence measurements to standard concentrations. This process works well at high concentrations within a linear dynamic range but has diminishing reliability at low concentrations because it cannot explain "non-standard" data such as Cq values reflecting increasing variability at low concentrations or non-detects that do not yield Cq values at all. Here, fundamental probabilistic modeling concepts from classical quantitative microbiology were integrated into standard curve modeling approaches by reflecting well-understood mechanisms for random error in microbial data. This work showed that data diverging from the log-linear regression model at low concentrations as well as non-detects can be seamlessly integrated into enhanced standard curve analysis. The newly developed model provides improved representation of standard curve data at low concentrations while converging asymptotically upon conventional log-linear regression at high concentrations and adding no fitting parameters. Such modeling facilitates exploration of the effects of various random error mechanisms in experiments generating standard curve data, enables quantification of uncertainty in standard curve parameters, and is an important step toward quantifying uncertainty in qPCR-based concentration estimates. Improving understanding of the random error in qPCR data and standard curve modeling is especially important when low concentrations are of particular interest and inappropriate analysis can unduly affect interpretation, conclusions regarding lab performance, reported concentration estimates, and associated decision-making.

7.
Virol Sin ; 2022 Sep 24.
Article in English | MEDLINE | ID: covidwho-2258965

ABSTRACT

The continuously arising of SARS-CoV-2 variants has been posting a great threat to public health safety globally, from B.1.17 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta) to B.1.1.529 (Omicron). The emerging or re-emerging of the SARS-CoV-2 variants of concern is calling for the constant monitoring of their epidemics, pathogenicity and immune escape. In this study, we aimed to characterize replication and pathogenicity of the Alpha and Delta variant strains isolated from patients infected in Laos. The amino acid mutations within the spike fragment of the isolates were determined via sequencing. The more efficient replication of the Alpha and Delta isolates was documented than the prototyped SARS-CoV-2 in Calu-3 and Caco-2 â€‹cells, while such features were not observed in Huh-7, Vero E6 and HPA-3 â€‹cells. We utilized both animal models of human ACE2 (hACE2) transgenic mice and hamsters to evaluate the pathogenesis of the isolates. The Alpha and Delta can replicate well in multiple organs and cause moderate to severe lung pathology in these animals. In conclusion, the spike protein of the isolated Alpha and Delta variant strains was characterized, and the replication and pathogenicity of the strains in the cells and animal models were also evaluated.

8.
Heliyon ; 9(3): e13598, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2237236

ABSTRACT

Background and aims: Idiopathic pulmonary fibrosis (IPF) is a fibrosing lung disease with unknown etiology, leading to cough and dyspnoea, which is also one of the most common sequelae affecting the quality of life of COVID-19 survivors. There is no cure for IPF patients. We aim to develop a reliable IPF animal model with quantification of fibrosis based on Micro-Computer Tomography (micro-CT) images for the new drug discovery, because different bleomycin administration routes, doses, and intervals are reported in the literature, and there is no quantitative assessment of pulmonary fibrosis based on micro-CT images in animal studies. Methods: We compared three dosages (1.25 mg/kg, 2.5 mg/kg, and 5 mg/kg) of intratracheal bleomycin administration and experiment intervals (14 and 21 days) in C57BL/6 mice by investigating survival rates, pulmonary histopathology, micro-CT, peripheral CD4+ & CD8+ cells, and cytokines. Moreover, a simple and reliable new method was developed for scoring fibrosis in live mice based on Micro-CT images by using Image J software, which transfers the dark sections in pulmonary Micro-CT images to light colors on a black background. Results: The levels of hydroxyproline, inflammation cytokine, fibrotic pathological changes, and collagen deposition in the lungs of mice were bleomycin dose-dependent and time-dependent as well as the body weight loss. Based on the above results, the mice model at 21 days after being given bleomycin at 1.25 mg/kg has optimal pulmonary fibrosis with a high survival rate and low toxicity. There is a significant decrease in the light area (gray value at 9.86 ± 0.72) in the BLM mice, indicating that a significant decrease in the alveolar air area was observed in BLM injured mice compared to normal groups (###p < 0.001), while the Pirfenidone administration increased the light area (gray value) to 21.71 ± 2.95 which is close to the value observed in the normal mice (gray value at 23.23 ± 1.66), which is consistent with the protein levels of Col1A1, and α-SMA. Notably, the standard deviations for the consecutive six images of each group indicate the precision of this developed quantitation method for the micro-CT image taken at the fifth rib of each mouse. Conclusion: Provided a quantifying method for Micro-CT images in an optimal and repeatable pulmonary fibrosis mice model for exploring novel therapeutic interventions.

9.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.22.23284878

ABSTRACT

Wastewater-based surveillance (WBS) is a powerful tool for understanding community COVID-19 disease burden and informing public health policy. The potential of WBS for understanding COVID-19 impact in non-healthcare settings has not been explored to the same degree. Here we examined how SARS-CoV-2 measured from municipal wastewater treatment plants (WWTPs) correlates with local workforce absenteeism. SARS-CoV-2 RNA N1 and N2 were quantified three times per week by RT-qPCR in samples collected at three WWTPs servicing Calgary and surrounding areas, Canada (1.3 million residents) between June 2020 and March 2022. Wastewater trends were compared to workforce absenteeism using data from the largest employer in the city (>15,000 staff). Absences were classified as being COVID-19-related, COVID-19-confirmed, and unrelated to COVID-19. Poisson regression was performed to generate a prediction model for COVID-19 absenteeism based on wastewater data. SARS-CoV-2 RNA was detected in 95.5% (85/89) of weeks assessed. During this period 6592 COVID-19-related absences (1896 confirmed) and 4,524 unrelated absences COVID-19 cases were recorded. Employee absences significantly increased as wastewater signal increased through pandemic waves. Strong correlations between COVID-19-confirmed absences and wastewater SARS-CoV-2 signals (N1 gene: r=0.824, p<0.0001 and N2 gene: r=0.826, p<0.0001) were observed. Linear regression with adjusted R2-value demonstrated a robust association (adjusted R2=0.783), when adjusted by 7 days, indicating wastewater provides a one-week leading signal. A generalized linear regression using a Poisson distribution was performed to predict COVID-19-confirmed absences out of the total number of absent employees using wastewater data as a leading indicator (P<0.0001). We also assessed the variation of predictions when the regression model was applied to new data, with the predicted values and corresponding confidence intervals closely tracking actual absenteeism data. Wastewater-based surveillance has the potential to be used by employers to anticipate workforce requirements and optimize human resource allocation in response to trackable respiratory illnesses like COVID-19.


Subject(s)
COVID-19 , Skull Base Neoplasms
10.
Jie Fang Jun Yi Xue Za Zhi ; 47(11):1073-1078, 2022.
Article in Chinese | ProQuest Central | ID: covidwho-2164243

ABSTRACT

Objective To analyze the mental health status of medical staff in the Fourth Branch of National Convention and Exhibition Center Makeshift Hospital during the COVID-19 epidemic in Shanghai to lay a theoretical foundation for the mental health and psychological intervention of medical staff in COVID-19 and other public health emergencies. Methods An online questionnaire survey was conducted with the generalized anxiety disorder scale (GAD-7), patient health questionnaire (PHQ-9), and Athens insomnia scale (AIS) before medical staff entering the makeshift hospital and one month later. Results The detection rates of anxiety, depression and insomnia were 18.4%, 22.1% and 27.0% respectively before entering the makeshift hospital, and 28.8%, 59.3% and 64.2% respectively during the follow-up period one month later. The GAD-7, PHQ-9 and AIS scores of medical staff after working in the makeshift hospital for one month increased significantly compared with those at the baseline period (P<0.01). Female and previous history of using sedative and hypnotic drugs were risk factors for increased depression level among medical staff in the makeshift hospital. Conclusions The anxiety, depression and insomnia levels of the medical staff in Shanghai increased after working in the makeshift hospital for one month. It is of great significance for the front-line support work to identify the medical staff with serious psychological problems and carry out psychological intervention in the early stage.

11.
J Clin Virol ; 158: 105354, 2023 01.
Article in English | MEDLINE | ID: covidwho-2150032

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is one of the main pathogens that causes acute lower respiratory tract infection (ARTI) in infants. During the Coronavirus Disease 2019 (COVID-19) pandemic, although strict interventions have been implemented, RSV infection has not decreased. OBJECTIVES: To study the epidemiological and genetic characteristics of RSV circulating in Hangzhou after the peak of COVID-19. METHODS: A total of 1225 nasopharyngeal swabs were collected from outpatients with ARTIs from July 2021 to January 2022 in The Children's Hospital, Zhejiang University School of Medicine. RESULTS: A total of 267 (21.79%) of the 1225 samples were RSV positive. There was no gender bias. However, an obvious age preference for infection was observed, and children aged 3-6 years were more susceptible, which was very different from previous RSV pandemic seasons. Phylogenetic analysis of 115 sequenced RSV isolates showed that all the RSV-A viruses belong to the ON1 subtype, which could be clustered into three clusters. While all the RSV-B viruses belong to BA9. Further analysis of the mutations highlights the fixation of ten mutations, which should be given extra attention regarding their biological properties. CONCLUSION: The incidence of RSV infection in preschool children reported in this study is high. Phylogenetic analysis showed that the subtype A ON1 genotype was the dominant strain in Hangzhou from July 2021 to January 2022.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Infant , Child, Preschool , Humans , Respiratory Syncytial Virus Infections/epidemiology , Phylogeny , COVID-19/epidemiology , Genotype
12.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2124779

ABSTRACT

Background Since the emergence of COVID-19, mandatory facemask wearing has been implemented around the world to prevent viral transmission, however, the impact of wearing facemasks on patients with COPD was unclear. Methods The current study undertakes a systematic review and meta-analysis of a comprehensive literature retrieval from six databases, based on the pre-determined eligibility criteria, irrespective of language. The risk of bias was assessed using an established instrument. We primarily focused on analyzing ETCO2, SpO2, and heart and respiratory rates, and also considered the impacts on physiological and exercise performance. A descriptive summary of the data and possible meta-analysis was performed. Forest plots were generated to pool estimates based on each of the study outcomes. Results Of the 3,751 publications considered, six publications were selected for a systematic review and two publications were included for meta-analysis, however, the quality of these six studies was relatively low overall. In the case of inactivity, the facemask wearing COPD cohort had higher respiratory rates than that of the non-facemask wearing cohort (MD = 1.00 and 95% CI 0.47–1.53, P < 0.05). There was no significant difference in ETCO2 (MD = 0.10 and 95% CI −1.57–1.78, P > 0.05) and heart rate (MD = 0.40 and 95% CI −3.59–4.39, P > 0.05) nor SpO2 (MD = −0.40 and 95% CI −0.84–0.04, P > 0.05) between the COPD patients with and without facemasks. Furthermore, it was observed that the only significant differences between the COPD patients with and without facemasks undertaking different activities were FEV1 (%) (MD = 3.84 and 95% CI 0.14–7.54, P < 0.05), FEV1/FVC (%) (MD = 3.25 and 95% CI 0.71–5.79, P < 0.05), and blood lactate (MD = −0.90 and 95% CI −1.73 to −0.07, P < 0.05). Conclusion Wearing facemasks decreased the exercise performance of patients with COPD, however, it had minimal impact on physiological indexes. Further investigations will be performed on the high-quality data from randomized control studies. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=326265, identifier: CRD42022326265.

13.
Cell Res ; 32(12): 1068-1085, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2117525

ABSTRACT

The emerging SARS-CoV-2 variants, commonly with many mutations in S1 subunit of spike (S) protein are weakening the efficacy of the current vaccines and antibody therapeutics. This calls for the variant-proof SARS-CoV-2 vaccines targeting the more conserved regions in S protein. Here, we designed a recombinant subunit vaccine, HR121, targeting the conserved HR1 domain in S2 subunit of S protein. HR121 consisting of HR1-linker1-HR2-linker2-HR1, is conformationally and functionally analogous to the HR1 domain present in the fusion intermediate conformation of S2 subunit. Immunization with HR121 in rabbits and rhesus macaques elicited highly potent cross-neutralizing antibodies against SARS-CoV-2 and its variants, particularly Omicron sublineages. Vaccination with HR121 achieved near-full protections against prototype SARS-CoV-2 infection in hACE2 transgenic mice, Syrian golden hamsters and rhesus macaques, and effective protection against Omicron BA.2 infection in Syrian golden hamsters. This study demonstrates that HR121 is a promising candidate of variant-proof SARS-CoV-2 vaccine with a novel conserved target in the S2 subunit for application against current and future SARS-CoV-2 variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Cricetinae , Mice , Humans , Rabbits , SARS-CoV-2 , Macaca mulatta , Mesocricetus , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , Antibodies, Neutralizing , Mice, Transgenic , Antibodies, Viral
16.
Sci Total Environ ; 853: 158547, 2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2008102

ABSTRACT

Clinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) will have greater value as an important diagnostic tool. An in-depth analysis and understanding of the metrics derived from WWS is required to interpret and utilize WWS-acquired data effectively (McClary-Gutierrez et al., 2021; O'Keeffe, 2021). In this study, the SARS-CoV-2 wastewater signal to clinical cases (WC) ratio was investigated across seven cities in Canada over periods ranging from 8 to 21 months. This work demonstrates that significant increases in the WC ratio occurred when clinical testing eligibility was modified to appointment-only testing, identifying a period of insufficient clinical testing (resulting in a reduction to testing access and a reduction in the number of daily tests) in these communities, despite increases in the wastewater signal. Furthermore, the WC ratio decreased significantly in 6 of the 7 studied locations, serving as a potential signal of the emergence of the Alpha variant of concern (VOC) in a relatively non-immunized community (40-60 % allelic proportion), while a more muted decrease in the WC ratio signaled the emergence of the Delta VOC in a relatively well-immunized community (40-60 % allelic proportion). Finally, a significant decrease in the WC ratio signaled the emergence of the Omicron VOC, likely because of the variant's greater effectiveness at evading immunity, leading to a significant number of new reported clinical cases, even when community immunity was high. The WC ratio, used as an additional monitoring metric, could complement clinical case counts and wastewater signals as individual metrics in its potential ability to identify important epidemiological occurrences, adding value to WWS as a diagnostic technology during the COVID-19 pandemic and likely for future pandemics.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Wastewater , Wastewater-Based Epidemiological Monitoring
17.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1990756.v1

ABSTRACT

Background: As the COVID-19 pandemic rages rampantly worldwide, wearing masks has become necessary. However, it remains unexplored concerning the impact of different types of masks on communication between pediatricians and patients. Objective: Against this backdrop, this study aims to investigate the influence of cartoon masks and standard masks on doctor-patient communication in pediatric treatment. Research design: A randomized controlled trial was conducted in the pediatric clinic of Ruijin Hospital affiliated to Shanghai Jiao Tong University between April and August 2021. Parents were divided into cartoon mask group and standard mask group based on the masks worn by the attending doctors. A questionnaire was conducted immediately after the visit to discern the demographic variables and evaluate the effect of communication. Statistical analysis was performed using SPSS 23.0 and ROST CM6 Chinese Sentiment Dictionary. Results: 200 valid questionnaires are subject to the statistical analysis. Results suggest that parents are in favor of cartoon masks, which can better reflect the sincerity of pediatricians (100 vs 88, p < 0.001) and imply that they are really listening (94 vs 84, p = 0.024). Besides, cartoon masks indicate more attention is paid to children (99 vs 85, p < 0.001). It is shown that parents tend to comment more positively on pediatricians wearing cartoon masks (74.28% vs 28.57%). However, 60% of pediatricians indicate they are less likely to choose cartoon masks. Conclusion: Results show parents prefer doctors who wear cartoon masks, for it shows their sincerity and really listening, and much more attention is paid to their children’s feelings. Therefore, this study argues that cartoon masks exert a largely positive impact on the effectiveness of doctor-patient communication and thus they are highly recommended for pediatricians.


Subject(s)
COVID-19
18.
BMJ Open ; 11(8), 2021.
Article in English | ProQuest Central | ID: covidwho-1842919

ABSTRACT

IntroductionThe COVID-19 pandemic has an excessive impact on residents in long-term care facilities (LTCF), causing high morbidity and mortality. Early detection of presymptomatic and asymptomatic COVID-19 cases supports the timely implementation of effective outbreak control measures but repetitive screening of residents and staff incurs costs and discomfort. Administration of vaccines is key to controlling the pandemic but the robustness and longevity of the antibody response, correlation of neutralising antibodies with commercial antibody assays, and the efficacy of current vaccines for emerging COVID-19 variants require further study. We propose to monitor SARS-CoV-2 in site-specific sewage as an early warning system for COVID-19 in LTCF and to study the immune response of the staff and residents in LTCF to COVID-19 vaccines.Methods and analysisThe study includes two parts: (1) detection and quantification of SARS-CoV-2 in LTCF site-specific sewage samples using a molecular assay followed by notification of Public Health within 24 hours as an early warning system for appropriate outbreak investigation and control measures and cost–benefit analyses of the system and (2) testing for SARS-CoV-2 antibodies among staff and residents in LTCF at various time points before and after COVID-19 vaccination using commercial assays and neutralising antibody testing performed at a reference laboratory.Ethics and disseminationEthics approval was obtained from the University of Alberta Health Research Ethics Board with considerations to minimise risk and discomforts for the participants. Early recognition of a COVID-19 case in an LTCF might prevent further transmission in residents and staff. There was no direct benefit identified to the participants of the immunity study. Anticipated dissemination of information includes a summary report to the immunity study participants, sharing of study data with the scientific community through the Canadian COVID-19 Immunity Task Force, and prompt dissemination of study results in meeting s and manuscripts in peer-reviewed journals.

19.
J Nat Prod ; 85(4): 878-887, 2022 04 22.
Article in English | MEDLINE | ID: covidwho-1805542

ABSTRACT

Eight new aspulvinone analogues, aspulvins A-H (1-8) and aspulvinones D, M, O, and R (9-12), were isolated from cultures of the endophytic fungus Cladosporium sp. 7951. Detailed spectroscopic analyses were conducted to determine the structures of the new compounds. All isolates displayed different degrees of inhibitory activity against the severe acute respiratory syndrome coronavirus 2 main protease (SARS-CoV-2 Mpro) at 10 µM. Notably, compounds 9, 10, and 12 showed potential SARS-CoV-2 Mpro inhibition with IC50 values of 10.3 ± 0.6, 9.4 ± 0.6, and 7.7 ± 0.6 µM, respectively. For all compounds except 3 and 4, the anti-inflammatory activity occurred by inhibiting the release of lactate dehydrogenase (LDH) with IC50 values ranging from 0.7 to 7.4 µM. Compound 10 showed the most potent anti-inflammatory activity by inhibiting Casp-1 cleavage, IL-1ß maturation, NLRP3 inflammasome activation, and pyroptosis. The findings reveal that the aspulvinone analogues 9, 10, and 12 could be promising candidates for coronavirus disease 2019 (COVID-19) treatment as they inhibit SARS-CoV-2 infection and reduce inflammatory reactions caused by SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/chemistry , Cladosporium , Humans
20.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.19.22274052

ABSTRACT

Clinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the extant and anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) is likely to have greater value as an important diagnostic tool to inform public health. As the widespread adoption of WWS is relatively new at the scale employed for COVID-19, interpretation of data, including the relationship to clinical cases, has yet to be standardized. An in-depth analysis of the metrics derived from WWS is required for public health units/agencies to interpret and utilize WWS-acquired data effectively and efficiently. In this study, the SARS-CoV-2 wastewater signal to clinical cases (WC) ratio was investigated across seven different cities in Canada over periods ranging from 8 to 21 months. Significant increases in the WC ratio occurred when clinical testing eligibility was modified to appointment-only testing, identifying a period of insufficient clinical testing in these communities. The WC ratio decreased significantly during the emergence of the Alpha variant of concern (VOC) in a relatively non-immunized communitys wastewater (40-60% allelic proportion), while a more muted decrease in the WC ratio signaled the emergence of the Delta VOC in a relatively well-immunized communitys wastewater (40-60% allelic proportion). Finally, a rapid and significant decrease in the WC ratio signaled the emergence of the Omicron VOC, likely because of the variants greater effectiveness at evading immunity, leading to a significant number of new reported clinical cases, even when vaccine-induced community immunity was high. The WC ratio, used as an additional monitoring metric, complements clinical case counts and wastewater signals as individual metrics in its ability to identify important epidemiological occurrences, adding value to WWS as a diagnostic technology during the COVID-19 pandemic and likely for future pandemics.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL